

McGOEY, HAUSER and EDSALL CONSULTING ENGINEERS D.P.C.

MARK J. EDSALL, P.E., P.P. (NY, NJ & PA) MICHAEL W. WEEKS, P.E. (NY, NJ & PA) MICHAEL J. LAMOREAUX, P.E. (NY, NJ, PA, VT & VA) MATTHEW J. SICKLER, P.E. (NY & PA) PATRICK J. HINES

Main Office 33 Airport Center Drive Suite 202 New Windsor, New York 12553

(845) 567-3100 fax: (845) 567-3232 e-mail: mheny@mhepc.com

Principal Emeritus: RICHARD D. McGOEY, P.E. (NY & PA) WILLIAM J. HAUSER, P.E. (NY, NJ & PA)

TOWN OF NEWBURGH PLANNING BOARD **TECHNICAL REVIEW COMMENTS**

PROJECT: PROJECT NO.: PROJECT LOCATION: **PROJECT REPRESENTATIVE: TALCOTT ENGINEERING** REVIEW DATE: **MEETING DATE:**

CRONK ESTATES III 2015-14 SECTION 1, BLOCK 2, LOT 17.24 (LOT 8) **11 SEPTEMBER 2015 17 SEPTEMBER 2015**

- 1. Plans have been revised based on input from the Public Hearing. A No Outlet sign has been added to the Private Road sign at the intersection of Peaceful Court and Cronk Road. Work hours have been identified restricting work from 9 a.m. to 5 p.m., Monday through Friday. This seems slightly restrictive and is more restrictive than Town of Newburgh Code Requirements.
- 2. A revised Storm Water Management Report has been submitted identifying capacity within the existing storm water management system for the proposed increased impervious area for the additional lot.

Respectfully submitted,

McGoey, Hauser and Edsall Consulting Engineers, D.P.C.

Patrick J. Hines Principal

• Regional Office • 111 Wheatfield Drive • Suite 1 • Milford, Pennsylvania 18337 • 570-296-2765 •

Talcott Engineering DESIGN, PLLC

1 GARDNERTOWN ROAD ~ NEWBURGH, NY 12550 (845) 569-8400* ~ (fax) (845) 569-4583

Town of Newburgh Planning Board 308 Gardnertown Road Newburgh, NY 12550

Attn: John Ewasutyn, Chairman

Re: Project Narrative P.B. Project No. 2015-14 Cronk Estates III SBL: 1-2-17.24 Job No. 14199-GGD September 4, 2015

Un SEP MCGOEY, HAUSER AND EDSALL CONSULTING ENGINEERS. PC

PROJECT NARRATIVE

Dear John,

Please be advised that Talcott Engineering has prepared revise plans for the above referenced project. Revisions, per the public hearing, are as follows;

- 1) Limits of disturbance is now shown.
- 2) A "NO OUTLET" sign has been added to the beginning of Peaceful Court.
- 3) Work hours are listed on plans.

With respect to the neighbors' concerns regarding road repair, the existing maintenance agreement (emailed 9/2/15) already has a clause in it that requires the applicant to make the repairs discussed at my site meeting with the neighbors (see paragraph 4).

TE has prepared eleven sets of revised plans and one set of drainage calculations for delivery to the Planning Board on Wednesday, September 9th for the September 17th Planning Board Meeting. I will also deliver one set of plans and drainage calculations to Pat Hines for review.

Respectfully yours,

Charles T. Brown, P.E. – President Talcott Engineering

Taconic Design

ENGINEERING, PLLC. 3125 ROUTE 9W* NEW WINDSOR, NY 12553 (845)-569-8400 * (fax) (845)-569-4583

STORMWATER MANAGEMENT REPORT

for the

6 LOT RESIDENTIAL SUBDIVISION KNOWN AS "CRONK ESTATES II"

Peaceful Court SBL: 1-2-17.2 Town of Newburgh Orange County, New York

Report prepared for:

Fox Crest Lane, LLC 15 Madeline Terrace Spring Valley, NY 10977

Report prepared by:

Charles T. Brown, PE Taconic Design Engineering, PLLC 3125 Route 9W New Windsor, NY 12553 (845) 569-8400 Revised: June 24, 2011 Revised: June 10, 2011 Revised: May 25, 2011 Revised: April 18, 2011 February 23, 2011 Job #09185 Job #09185

Contents:

- I Commentary
- II Pond Volume Calculations
- III Hydraulic Calculations for Quality
- IV Hydraulic Calculations for Quantity and Channel Protection
- V Outlet Control Structure and Pond Profile
- VI Pond Construction Standard Specifications
- VII Calculation of Off-Site Swale

Pre & Post Development Drainage Area Maps Included

I Commentary

1.0 Purpose:

The purpose of this study is to address the potential impacts, if any, which would be generated by the 6^t lot residential subdivision, of a 21 acre parcel (SBL: 1-2-17.2), known as "Cronk Estates II", located on Peaceful Court, in the Town of Newburgh, Orange County, New York, and to develop a stormwater management plan for the site.

2.0 Project Description:

The proposed project is a 6 lot residential subdivision of a 21 acre parcel. The proposed lots will be serviced by town water or on site wells and septic systems that have been designed to current New York State Health Department regulations and all other applicable standards. Project plans detail all improvements as well as erosion and sedimentary control measures and are a part of this report.

3.0 Drainage Analysis:

This study analyses the pre-development and post-development storm drainage flows using the Soil Conservation Service method as outlined in TR-55 ("Urban Hydrology for Small Watersheds", June 1986). Quantitative storm water flows are evaluated per Town of Newburgh and New York State DEC standards. The rational method is used for on site piping design.

3.1 Drainage Areas:

General

All areas are evaluated for 1 year, 2 year, 10 year and 100 year storms for existing and developed conditions.

The site area containing all proposed development is comprised of three (3) drainage areas, described below as follows:

Drainage Area "A"

This area is the center portion of the site and drains north to the existing lots of the "Cronk Estates" subdivision and "Peaceful Court" for the developed condition. It contains all proposed impervious areas, and a micropool extended detention basin (P-1) to mitigate quantity for the development of the site. Rooftop disconnection, dry swales, bioretention swales, soil restoration and forebays are used to address water quality. These measures were selected based on the site topography and soil conditions for the maximum runoff reduction credit possible.

Drainage Area "B"

4

This area drains to the east property line. For the developed condition for quantity, some of this area is shifted to "Area A", reducing runoff to less then pre-development rates for all design storms. Soil restoration and conservation easements are used to address water quality.

Drainage Area "C"

This area drains to the west property line. For the developed condition for quantity, some of this area is shifted to "Area A", reducing runoff to less then pre-development rates for the 10 and 100 year storms. Soil restoration and conservation easements are used to address water quality.

Drainage Area Summary

Requirements for treatment and methods of treatment for the proposed drainage areas are fully described in the forthcoming sections. The existing and proposed drainage areas are summarized below.

Drainage Area	Area	CN	Tc
AEX	6.56	70	0.30
APR	8.12	74 75	0.30
BEX	9,96	70	0.30
BPR	8.56	70	0.30
CEX	4.43	70	0.30
CPR	4.29	71	0.30

3.2 Soils:

Based on the Orange County Soil Survey (Oct, 1981), it was determined that the soils within the drainage areas are as follows:

Symbol	Description	Hydrologic Group (HSG)
MdB	Mardin Gravelly Silt Loam	"С"
NaD	Nassau Shally Silt Loam	"С"
BnC	Bath Nassau Complex	"C"
SxC	Swartswood	"C"

The runoff curve numbers (CN) have been based on "C" soils.

3.3 Land Coverage:

The type of land coverage for the areas analyzed was determined by field investigation combined with referencing the USGS topo maps, the aerial survey of this site and the soil survey. The majority of the parcel in existing conditions is woods.

4.0 Qualitative Analysis:

The SPDES permit for this project is required under GP-0-10-001. For post construction water quality for Area "A", the methods outlined in GP-0-10-001 have been used (plans and calculations are attached). In Section III of this report, the water quality volume (WQv), as set forth in the current N.Y.S.D.E.C. Design Standard "Stormwater Management Design Manual", has been determined and results based upon actual proposed impervious areas for the drainage area are summarized below.

Drainage Area	Area	Rainfall	Impervious	WQv required (ac.ft)	WQv proposed (ac. ft)
APR	8.12	1.2 in	9.6%	0.162	0.198*
*WQv provided A	rea "A"				
Dry Swales Forebays Permanent Pool Bioretention Swal Total	es	0.042 0.034 0.081 <u>0.041</u> 0.198 ac	e ft		

Note: In addition to the above, the pond extended detention provides 0.32 ac ft of water quality storage.

WQv for Areas "B" and "C" is not required (see below), however the last 150' (downhill) of these areas is to be protected forest by conservation easement.

Runoff Reductions:

Area "A": The minimum runoff reduction (RRv min) is met using the measures defined in this report, but 100% runoff reduction is not achieved. However, as all of drainage Area "A", with the exception of an insignificant area around the pond, is treated with green infrastructure water quality practices, selected for highest credit toward runoff reduction, the runoff reduction criteria has been met for this project.

Areas "B" and "C": As these areas contain <u>NO</u> impervious areas, impervious areas can not be treated, therefore 100% runoff reduction for these areas is not required.

5.0 Quantitative Analysis:

All areas are analyzed for 1yr, 2yr, 10yr and 100yr storms for existing and developed conditions. Section IV of this report includes calculations for the stage storage discharges of the outlet pipes of the outlet control structures.

Storm	1 year	2 year	10 year	100 year
Rainfall	2.8 in	3.5 in	6.0	8.0 in
AEX APR AR % Reduction	3.1 4.9 5. 2 0 5 9.6	5.2 7.8 8.2 202.2		22.8 31.1 31.8 9.8 10.00 57.0% 56.1%

Worksheet 2: Runoff curve number and runoff

.....

Project CRONE ESTATES IL	By <u>GO</u>	Date 4/12/11.
Location PENCETIS. CT. NEWBURGH	Checked	Date
Circle one: Present Developed <u>A1251</u>	R " 141	99 9/3/15

1. Runoff curve number (CN)

4

Soil name and hydrologic	Cover description (cover type, treatment, and		CN 1/			Area	Product of CN x area	
group	hydrologic condition; percent impervious; unconnected/connected impervio	119	Table 2-2	. 2-3	5. 2-4	acres ni ² %		-
(appendix A)	area ratio)		Tab	FIC	F18.	3.08	215.60	
BMC, SxC, "C" NaD	WOODS (600D)		70			2.97 4.19	2 93,3 0	
- k -	LANN		74			4.08 3,15	301.97 233.10	
- u	IMPERVIOJSE		93			0.78	94.08 76.44	
								1
Next a fill of the second s								
	,	Ì						
1/ Use only on	e CN source per line.		[ota]	5 3		8.12	602.B4	
CN (weighted) =	total product 602.94 75.3 total area 8.12	<u>کې</u> ر	Jse (N =	0.000	74	611.60	5
2. Runoff			:0 r m	#1	St	orm #2	Storm #3	STORM & 4
Frequency	••••••• yr		1 41	:	Z	YR	10 4 n	100 M
Rainfall, P (24	-hour) in		2,8	;	1	3,5	6.0	8.0
	in		0.7	8	1	.24	3.19	4.93
(Use P and CN or eqs. 2-3 a	with table $2-1$, fig. $2-1$, nd $2-4$.)	E	2.8	21	1.	30	3,28	5.04

(210-VI-TR-55, Second Ed., June 1986)

D-2

PROJECT : CRONK II SUBDIVISION	JOB NO.	: 14199
LOCATION: CRONK ROAD	DATE	:09-03-15
TOWN OF NEWBURGH, NY	SHEET	1 OF
TYPE OF CALCULATION: STORM WATER MANAGEMENT	COMPUTE	D BY: CTB
COMMENTS: TYPE III DISTRIBUTION SOIL CONSERVATION SERVICE METHOD	CHECKED	BY : CTB
~======================================		

· .

Hydrograph Name: APR-1

Storm	Data		Drai	nage Area l	Data	
Frequency : Rainfall : Runoff :		CN :	75	. T.C.: Ia/P: Status:	0.10	°S. ***
Time Flow (Hrs) (CFS)	Time (Hrs)	Flow (CFS)	Time (Hrs)	Flow (CFS)	Time (Hrs)	Flow (CFS)
11.30 0.3	$14.00 \\ 14.10 \\ 14.20 \\ 14.30 \\ 14.40 \\ 14.50 \\ 14.60 \\ 14.60 \\ 14.90 \\ 15.00 \\ 15.10 \\ 15.20 \\ 15.30 \\ 15.40 $		16.60 16.70 16.80 17.00 17.10 17.20 17.30 17.40 17.50 17.60 17.60 17.70 17.80 17.90 18.00 18.10 18.20 18.30 18.30 18.40 18.50	0.2 0.2 0.2	$19.30 \\ 19.40 \\ 19.50 \\ 19.60 \\ 19.70 \\ 19.80 \\ 19.90 \\ 20.00 \\ 20.00 \\ 20.20 \\ 20.30 \\ 20.40 \\ 20.50 \\ 20.60 \\ 20.50 \\ 20.60 \\ 20.70 \\ 20.80 \\ 20.90 $	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

PROJECT : CRONK II SUBDIVISION	JOB NO.: 14199
LOCATION: CRONK ROAD TOWN OF NEWBURGH, NY	DATE :09-03-15
	SHEET 2 OF
TYPE OF CALCULATION: STORM WATER MANAGEMENT	COMPUTED BY: CTB
COMMENTS: TYPE III DISTRIBUTION SOIL CONSERVATION SERVICE METHOD	CHECKED BY : CTB

.

WORKING CURVE FOR POND NO.PONDA15

			FOR FORD	NO. FONDALD	DT=	0.10 HRS
		ST	ORAGE			
ELEV (FT)	DISC. (CFS)	S2 (AC FT)	S2 (CFS-HRS)	02/2 (CFS)	S2/DT (CFS)	S2/DT+O2/2 (CFS)
632.00	0.0	0.00	0.0	0.0	0.0	0.0
633.00	0.2	0.30	3.6	0.1	36.0	36.1
634.00	6.2	0.62	7.5	3.1	75.0	78.1
635.00	8.8	0.99	12.0	4.4	120.0	124.4
636.00	10.7	1.44	17.4	5.4	174.0	179.4
637.00	12.4	1.97	23.8	6.2	238.0	244.2

PROJECT : CRONK II SUBDIVISION	JOB NO.: 14199
LOCATION: CRONK ROAD TOWN OF NEWBURGH, NY	DATE :09-03-15
	SHEET 3 OF
TYPE OF CALCULATION: STORM WATER MANAGEMENT	COMPUTED BY: CTB
COMMENTS: TYPE III DISTRIBUTION SOIL CONSERVATION SERVICE METHOD	CHECKED BY : CTB
POND ROUTING	

· ·

HYDROGRAPH #APR-1 POND #PONDA15 STORM FREQUENCY: 1 YRS.

		AVG			WATER	
TIME (HRS)	INFLOW (CFS)	INFLOW (CFS)	S2/DT+O2/2 (CFS)	OUTFLOW (CFS)	ELEV (FT)	STORAGE (AC FT)
11.00	0.3	0.2	0.2	0.0	632.01	0.00
11.10	0.3	0.3	0.5	0.0	632.01	0.00
11.20	0.3	0.3	0.8	0.0	632.02	0.01
11.30	0.3	0.3	1.1	0.0	632.03	0.01
11.40	0.4	0.4	1.5	0.0	632.04	0.01
11.50	0.4	0.4	1.9 2.4	0.0 0.0	632.05	0.02 0.02
11.60 11.70	0.5 0.6	0.5 0.6	2.4 3.0	0.0	632.07 632.08	0.02
11.80	0.8	0.8	3.0	0.0	632.08	0.02
11.00	0.9	0.8	4.5	0.0	632.12	0.04
12.00	1.3	1.1	5.6	0.0	632.16	0.05
12.10	1.9	1.6	7.2	0.0	632.20	0.06
12.20	3.0	2.5	9.7	0.1	632.27	0.08
12.30	4.6	3.8	13.4	0.1	632.37	0.11
12.40	5.2	4.9	18.2	0.1	632.50	0.15
12.50	4.7	5.0	23.1	0.2	632.64	0.19
12.60	3.8	4.3	27.2	0.2	632.75	0.22
12.70	2.9	3.4	30.4	0.2	632.84	0.25
12.80	2.1	2.5	32.7	0.2	632.91	0.27
12.90	1.7	1.9	34.4	0.2	632.95	0.28
13.00	1.2	$1.5 \\ 1.2$	35.7 36.7	0.2 0.3	632.99 633.01	0.29 0.30
13.10 13.20	1.1 0.9	1.2	36.7	0.3	633.01	0.30
13.30	0.9	0.9	37.9	0.5	633.04	0.31
13.40	0.7	0.8	38.2	0.5	633.05	0.31
13.50	0.7	0.7	38.4	0.6	633.05	0.31
13.60	0.7	0.7	38.5	0.6	633.06	0.32
13.70	0.6	0.7	38.6	0.6	633.06	0.32
13.80	0.6	0.6	38.6	0.6	633.06	0.32
13.90	0.6	0.6	38.6	0.6	633.06	0.32
14.00	0.6	0.6	38.6	0.6	.633.06	0.32
14.10	0.5	0.6	38.6	0.6	633.06	0.32
14.20	0.5	0.5	38.5	0.6	633.06	0.32
14.30	0.5	0.5	38.4	0.6	633.05	0.31
14.40	0.5	0.5	38.3	0.6	633.05	0.31

PROJECT : CRONK II SUBDIVISION	JOB NO.: 14199
LOCATION: CRONK ROAD	DATE :09-03-15
TOWN OF NEWBURGH, NY	SHEET 4 OF
TYPE OF CALCULATION: STORM WATER MANAGEMENT	COMPUTED BY: CTB
COMMENTS: TYPE III DISTRIBUTION SOIL CONSERVATION SERVICE METHOD	CHECKED BY : CTB

. .

POND ROUTING

HYDROGRAPH #APR-1 POND #PONDA15 STORM FREQUENCY: 1 YRS.

TIME	INFLOW	AVG INFLOW	S2/DT+02/2	OUTFLOW	WATER ELEV	STORAGE
(HRS)	(CFS)	(CFS)	(CFS)	(CFS)	(FT)	(AC FT)
14.60	0.5	0.5	38.2	0.5	633.05	0.31
14.70	0.5	0.5	38.2	0.5	633.05	0.31
14.80	0.4	0.5	38.2	0.5	633.05	0.31
14.90	0.4	0.4	38.1	0.5	633.05	0.31
15.00	0.4	0.4	38.0	0.5 0.5	633.05	0.31 0.31
15.10	0.4	0.4	37.9 37.8	0.5	633.04 633.04	0.31
15.20	0.4 0.4	0.4 0.4	37.8	0.5	633.04	0.31
15.30 15.40	0.4	0.4	37.6	0.5	633.04	0.31
15.40	0.4	0.4	37.5	0.4	633.03	0.31
15.60	0.3	0.4	37.5	0.4	633.03	0.31
15.70	0.3	0.3	37.4	0.4	633.03	0.31
15.80	0.3	0.3	37.3	0.4	633.03	0.31
15.90	0.3	0.3	37.2	0.4	633.03	0.31
16.00	0.3	0.3	37.1	0.4	633.02	0.30
16.10	0.3	0.3	37.0	0.4	633.02	0.30
16.20	0.3	0.3	36.9	0.4	633.02	0.30
16.30	0.3	0.3	36.8	0.3	633.02	0.30
16.40	0.3	0.3	36.8	0.3	633.02	0.30
16.50	0.3	0.3	36.8	0.3	633.02	0.30
16.60	0.3	0.3	36.8	0.3	633.02	0.30
16.70	0.2	0.3	36.8	0.3	633.02	0.30
16.80	0.2	0.2	36.7	0.3	633.01	0.30 0.30
16.90	0.2	0.2 0.2	36.6	0.3 0.3	633.01 633.01	0.30
17.00	0.2 0.2	0.2	36.5 36.4	0.3	633.01	0.30
17.10 17.20	0.2	0.2	36.3	0.3	633.00	0.30
17.20	0.2	0.2	36.2	0.3	633.00	0.30
17.40	0.2	0.2	36.1	0.2	633.00	0.30
17.50	0.2	0.2	36.1	0.2	633.00	0.30
17.60	0.2	0.2	36.1	0.2	633.00	0.30
17.70	0.2	0.2	36.1	0.2	633.00	0.30
17.80	0.2	0.2	36.1	0.2	633.00	0.30
17.90	0.2	0.2	36.1	0.2	633.00	0.30
18.00	0.2	0.2	36.1	0.2	633.00	0.30

· ·

PROJECT : CRONK II SUBDIVISION	JOB NC	.: 14199		
LOCATION: CRONK ROAD TOWN OF NEWBURGH, NY			DATE	:09-03-15
			SHEET	6 OF
TYPE OF CALCULATION: STORM WATER	MANAGEMENT		COMPUI	ED BY: CTB
COMMENTS: TYPE III DISTRIBUTION SOIL CONSERVATION SERVICE				D BY : CTB
	.======================================		======	
HYDROG	RAPH #APR-1			
	#PONDA15			
STORM FRE	QUENCY: 1 Y	ks.		
SUMMARY OF POND	ROUTING RES	SULTS		
PEAK INFLOW	: 5.2	CFS	@ T =	12.40 HRS.
PEAK DISCHARGE	: 0.0	5 CFS	@ T =	13.50 HRS.
PEAK STORAGE VOLUME	: 0.33	AC.FT	•	
PEAK STORAGE ELEVATION	: 633.00	5		
FREEBOARD	: 3.94	FT.		

PROJECT : CRONK II SUBDIVISION	JOB NO.	: 14199
LOCATION: CRONK ROAD	DATE	:09-03-15
TOWN OF NEWBURGH, NY	SHEET	1 OF
TYPE OF CALCULATION: STORM WATER MANAGEMENT	COMPUTE	ED BY: CTB
COMMENTS: TYPE III DISTRIBUTION SOIL CONSERVATION SERVICE METHOD	CHECKEI) BY : CTB

Hydrograph Name: APR-2

		7				
Storm	Data		Drai	nage Area I)ata	. . .
Frequency : Rainfall : Runoff :	2 Yrs. 3.50 In.	Area: CN :	8.1 Ac 75	Ia/P:	0.10	
Time Flow (Hrs) (CFS)	(Hrs)	Flow (CFS)	(Hrs)	Flow (CFS)	Time (Hrs)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.60 13.70 13.80 13.90 14.00 14.00 14.10 14.20 14.30 14.40 14.50 14.60 14.60 14.70 14.80 14.90 15.00 15.10 15.20 15.30 15.40 15.50 15.60 15.70 15.80 15.90 15.90 16.00	1.0 1.0 0.9 0.9 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7	16.20 16.30 16.40 16.50 16.60 16.70 16.90 17.00 17.20 17.30 17.40 17.50 17.60 17.70 17.60 17.90 17.90 18.00 18.10 18.20 18.30 18.40 18.50 18.60	$\begin{array}{c} 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.3 \\$	18.80 18.90 19.00 19.10 19.20 19.30 19.30 19.60 19.70 19.60 19.70 19.90 20.00 20.00 20.20 20.30 20.40 20.50 20.60 20.70 20.80 20.90	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

PROJECT : CRONK II SUBDIVISION	JOB NO.: 14199
LOCATION: CRONK ROAD TOWN OF NEWBURGH, NY	DATE :09-03-15
·	SHEET 2 OF
TYPE OF CALCULATION: STORM WATER MANAGEMENT	COMPUTED BY: CTB
COMMENTS: TYPE III DISTRIBUTION SOIL CONSERVATION SERVICE METHOD	CHECKED BY : CTB

.

WORKING CURVE FOR POND NO.PONDA15

0.10 HRS	DT=	NO. FONDAIS	FOR FORD			
			ORAGE	ST		
S2/DT+O2/2 (CFS)	S2/DT (CFS)	02/2 (CFS)	S2 (CFS-HRS)	S2 (AC FT)	DISC. (CFS)	ELEV (FT)
0.0	0.0	0.0	0.0	0.00	0.0	632.00
36.1	36.0	0.1	3.6	0.30	0.2	633.00
78.1	75.0	3.1	7.5	0.62	6.2	634.00
124.4	120.0	4.4	12.0	0.99	8.8	635.00
179.4	174.0	5.4	17.4	1.44	10.7	636.00
244.2	238.0	6.2	23.8	1.97	12.4	637.00

PROJECT : CRONK II SUBDIVISION	JOB NO.: 14199
LOCATION: CRONK ROAD	DATE :09-03-15
TOWN OF NEWBURGH, NY	SHEET 3 OF
TYPE OF CALCULATION: STORM WATER MANAGEMENT	COMPUTED BY: CTB
COMMENTS: TYPE III DISTRIBUTION SOIL CONSERVATION SERVICE METHOD	CHECKED BY : CTB
POND ROUTING	

· ·

HYDROGRAPH #APR-2 POND #PONDA15 STORM FREQUENCY: 2 YRS.

		AVG			WATER	
TIME	INFLOW	INFLOW	S2/DT+02/2	OUTFLOW	ELEV	STORAGE
(HRS)	(CFS)	(CFS)	(CFS)	(CFS)	(FT)	(AC FT)
11.00	0.4	0.2	0.2	0.0	632.01	0.00
11.10	0.4	0.4	0.6	0.0	632.02	0.00
11.20	0.5	0.5	1.1	0.0	632.03	0.01
11.30	0.5	0.5	1.6	0.0	632.04	0.01
11.40	0.6	0.6	2.2	0.0	632.06	0.02
11.50	0.7	0.7	2.9	0.0	632.08	0.02
11.60	0.7	0.7	3.6	0.0	632.10	0.03
11.70	0.9	0.8	4.4	0.0	632.12	0.04 0.05
11.80	1.2	1.1	5.5 6.8	0.0 0.0	632.15 632.19	0.05
11.90	1.4 2.0	1.3 1.7	8.5	0.0	632.24	0.08
12.00 12.10	2.0	2.5	10.9	0.1	632.30	0.09
12.10	4.7	3.9	14.7	0.1	632.41	0.12
12.30	7.3	6.0	20.6	0.1	632.57	0.17
12.40	8.2	7.8	28.3	0.2	632.78	0.23
12.50	7.4	7.8	35.9	0.2	632.99	0.30
12.60	5.9	6.7	42.4	1.1	633.15	0.35
12.70	4.6	5.3	46.6	1.7	633.25	0.38
12.80	3.4	4.0	48.9	2.1	633.30	0.40
12.90	2.7	3.1	49.9	2.2	633.33	0.40
13.00	1.9	2.3	50.0	2.2	633.33	0.40
13.10	1.7	1.8	49.6	2.2	633.32	0.40
13.20	1.4	1.6	49.0	2.1	633.31	0.40
13.30	1.3	1.3	48.2	2.0	633.29	0.39
13.40	1.2	1.3	47.5	1.9	633.27	0.38
13.50	1.1	1.2	46.8	1.8	633.25	0.38
13.60	1.0	1.1	46.1	1.7	633.24	0.37 0.37
13.70	1.0	1.0	45.4	1.6	633.22 633.21	0.37
13.80	1.0	1.0	44.8 44.3	1.5 1.4	633.21	0.36
13.90 14.00	0.9 0.9	1.0 0.9	44.3	1.4	633.18	0.36
14.00 14.10	0.9	0.9	43.8	1.3	633.17	0.35
14.10	0.9	0.9	43.0	1.2	633.16	0.35
14.20	0.8	0.8	42.6	1.2	633.15	0.35
14.30 14.40	0.8	0.8	42.2	1.1	633.15	0.34
74.10	0.0	0.0		-,-		

PROJECT : CRONK II SUBDIVISION	JOB NO.: 14199
LOCATION: CRONK ROAD TOWN OF NEWBURGH, NY	DATE :09-03-15
	SHEET 4 OF
TYPE OF CALCULATION: STORM WATER MANAGEMENT	COMPUTED BY: CTB
COMMENTS: TYPE III DISTRIBUTION SOIL CONSERVATION SERVICE METHOD	CHECKED BY : CTB
POND ROUTING	

HYDROGRAPH #APR-2 POND #PONDA15

STORM FREQUENCY: 2 YRS.

TIME (HRS)	INFLOW (CFS)	AVG INFLOW (CFS)	S2/DT+O2/2 (CFS)	OUTFLOW (CFS)	WATER ELEV (FT)	STORAGE (AC FT)
		INFLOW	• •		\mathbf{ELEV}	
17.30 17.40 17.50 17.60 17.70 17.80 17.90 18.00	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	37.4 37.3 37.2 37.1 37.0 36.9 36.8 36.8	0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.3	633.03 633.03 633.02 633.02 633.02 633.02 633.02 633.02	0.31 0.31 0.30 0.30 0.30 0.30 0.30 0.30

PROJECT : CRONK II SUBDIVISION	JOB NO.	: 14199
LOCATION: CRONK ROAD	DATE	:09-03-15
TOWN OF NEWBURGH, NY	SHEET	5 OF
TYPE OF CALCULATION: STORM WATER MANAGEMENT	COMPUTE	D BY: CTB
COMMENTS: TYPE III DISTRIBUTION SOIL CONSERVATION SERVICE METHOD	CHECKEL) BY : CTB
POND ROUTING		

·

HYDROGRAPH #APR-2 POND #PONDA15 STORM FREQUENCY: 2 YRS.

TIME (HRS)	INFLOW (CFS)	AVG INFLOW (CFS)	S2/DT+O2/2 (CFS)	OUTFLOW (CFS)	WATER ELEV (FT)	STORAGE (AC FT)
	(CFS) 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	(CFS) 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	(CFS) 36.8 36.8 36.8 36.8 36.7 36.6 36.5 36.4 36.1	(CFS) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	(FT) 633.02 633.02 633.02 633.02 633.02 633.01 633.01 633.01 633.00	(AC FT) 0.30 0.3
20.50 20.60 20.70 20.80 20.90 21.00	0.2 0.2 0.2 0.2 0.2 0.2	0.2 0.2 0.2 0.2 0.2 0.2	36.1 36.1 36.1 36.1 36.1 36.1	0.2 0.2 0.2 0.2 0.2 0.2	633.00 633.00 633.00 633.00 633.00 633.00	0.30 0.30 0.30 0.30 0.30 0.30

PROJECT : CRONK II SUBDIVISION	JOB NO.: 14199
LOCATION: CRONK ROAD	DATE :09-03-15
TOWN OF NEWBURGH, NY	SHEET 6 OF
TYPE OF CALCULATION: STORM WATER	MANAGEMENT COMPUTED BY: CTB
	METHOD CHECKED BY : CTB
=======================================	
PONL	GRAPH #APR-2 D #PONDA15 EQUENCY: 2 YRS.
SUMMARY OF PONT	O ROUTING RESULTS
PEAK INFLOW	: $8.2 \text{ CFS} @ T = 12.40 \text{ HRS}.$
PEAK DISCHARGE	: $2.2 \text{ CFS} @ T = 12.90 \text{ HRS}.$
PEAK STORAGE VOLUME	
PEAK STORAGE VOLUME	: 0.40 AC.F1.
PEAK STORAGE ELEVATION	: 633.33
FREEBOARD	: 3.67 FT.

PROJECT : CRONK II SUBDIVISION	JOB NO.	: 14199
LOCATION: CRONK ROAD	DATE	:09-03-15
TOWN OF NEWBURGH, NY	SHEET	1 OF
TYPE OF CALCULATION: STORM WATER MANAGEMENT	COMPUTE	D BY: CTB
COMMENTS: TYPE III DISTRIBUTION SOIL CONSERVATION SERVICE METHOD	CHECKED	BY : CTB

4 L

Hydrograph Name: APR-10

Stor	n Data	Drainage Area Data
Rainfall	10 Yrs. 6.00 In. 3.28 In.	Area: 8.1 Ac. T.C.: 0.30 Hrs CN : 75 Ia/P: 0.10 **** Hydrograph Status: Valid ****

Time (Hrs)	(CFS)	•	Flow (CFS)		Flow (CFS)	Time (Hrs)	Flow (CFS)
11.60 11.70 11.80 11.90 12.00 12.10 12.20 12.30 12.40 12.50 12.60 12.70	$ \begin{array}{c} 1.0\\ 1.1\\ 1.2\\ 1.3\\ 1.5\\ 1.7\\ 1.8\\ 2.4\\ 3.0\\ 3.5\\ 5.2\\ 7.5\\ 11.9\\ 18.4\\ 20.7\\ 18.8\\ 14.9\\ 11.5\\ 8.5\\ 6.7\\ 4.9\\ 4.3\\ 3.6\\ 3.3\\ 2.9\\ \end{array} $	$\begin{array}{c} 13.60\\ 13.70\\ 13.80\\ 13.90\\ 14.00\\ 14.00\\ 14.20\\ 14.30\\ 14.40\\ 14.50\\ 14.60\\ 14.50\\ 14.60\\ 14.70\\ 14.80\\ 14.90\\ 15.00\\ 15.10\\ 15.20\\ 15.10\\ 15.40\\ 15.50\\ 15.50\\ 15.60\\ 15.70\\ 15.80\\ 15.90\\ 16.00\end{array}$	$\begin{array}{c} 2.4\\ 2.3\\ 2.2\\ 2.1\\ 2.0\\ 2.0\\ 1.9\\ 1.8\\ 1.8\\ 1.7\\ 1.6\\ 1.6\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.4\\ 1.3\\ 1.3\\ 1.3\\ 1.2\\ 1.2\end{array}$	16.30 16.40 16.50 16.60 16.70 16.80 16.90 17.00 17.00 17.20 17.30 17.40 17.50 17.60 17.70 17.80 17.90 18.00 18.10 18.20 18.30 18.40 18.50 18.60	$\begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 0.9\\ 0.9\\ 0.9\\ 0.9\\ 0.9\\ 0.9\\ 0.9\\ 0$	18.80 18.90 19.00 19.10 19.20 19.30 19.40 19.50 19.60 19.70 19.80 19.90 20.00 20.00 20.20 20.30 20.40 20.50 20.60 20.80	0.6 0.6 0.6 0.6 0.5 0.5 0.5
13.50	2.8	16.10	1.2	18.70	0.6		

PROJECT : CRONK II SUBDIVISION	JOB NO.	: 14199
LOCATION: CRONK ROAD	DATE	:09-03-15
TOWN OF NEWBURGH, NY	SHEET	2 OF
TYPE OF CALCULATION: STORM WATER MANAGEMENT	COMPUTE	ED BY: CTB
COMMENTS: TYPE III DISTRIBUTION SOIL CONSERVATION SERVICE METHOD	CHECKEI) BY : CTB

WORKING CURVE FOR POND NO.PONDA15

			FOR FOID	NO.FONDAIS	DT=	0.10 HRS
ELEV (FT)	DISC. (CFS)	ST S2 (AC FT)	ORAGE S2 (CFS-HRS)	02/2 (CFS)	S2/DT (CFS)	S2/DT+O2/2 (CFS)
632.00 633.00 634.00 635.00 636.00 637.00	0.0 0.2 6.2 8.8 10.7 12.4	0.00 0.30 0.62 0.99 1.44 1.97	0.0 3.6 7.5 12.0 17.4 23.8	$0.0 \\ 0.1 \\ 3.1 \\ 4.4 \\ 5.4 \\ 6.2$	0.0 36.0 75.0 120.0 174.0 238.0	0.0 36.1 78.1 124.4 179.4 244.2

PROJECT : CRONK II SUBDIVISION	JOB NO.: 14199
LOCATION: CRONK ROAD TOWN OF NEWBURGH, NY	DATE :09-03-15
·	SHEET 3 OF
TYPE OF CALCULATION: STORM WATER MANAGEMENT	COMPUTED BY: CTB
COMMENTS: TYPE III DISTRIBUTION SOIL CONSERVATION SERVICE METHOD	CHECKED BY : CTB
POND ROUTING	

· ,

HYDROGRAPH #APR-10 POND #PONDA15 STORM FREQUENCY: 10 YRS.

TIME	INFLOW	AVG INFLOW	S2/DT+O2/2	OUTFLOW	WATER ELEV	STORAGE
(HRS)	(CFS)	(CFS)	(CFS)	(CFS)	(FT)	(AC FT)
11.00	1.0	0.5	0.5	0.0	632.01	0.00
11.10	1.1	1.1	1.6	0.0	632.04	0.01
11.20	1.2	1.2	2.8	0.0	632.08	0.02
11.30	1.3	1.3	4.1	0.0	632.11	0.03
11.40	1.5	1.4	5.5	0.0	632.15	0.05
11.50	1.7 1.8	1.6	7.1 8.9	0.0	632.20	0.06 0.07
11.60 11.70	⊥.8 2.4	1.8 2.1	8.9 10.9	0.1 0.1	632.25 632.30	0.07
11.80	2.4	2.1	13.5	0.1	632.30	0.11
11.90	3.5	3.3	16.7	0.1	632.46	0.14
12.00	5.2	4.4	21.0	0.1	632.58	0.17
12.10	7.5	6.4	27.3	0.2	632.76	0.22
12.20	11.9	9.7	36.8	0.3	633.02	0.30
12.30	18.4	15.2	51.7	2.5	633.37	0.42
12.40	20.7	19.6	68.8	4.9	633.78	0.55
12.50	18.8	19.8	83.7	6.5	634.12	0.66
12.60	14.9	16.8	94.0	7.1	634.34	0.75
12.70	11.5	13.2	100.1	7.4	634.48	0.80
12.80	8.5 6.7	10.0 7.6	102.7 102.7	7.6 7.6	634.53 634.53	0.82 0.82
12.90 13.00	6.7 4.9	7.6	102.7	7.5	634.53	0.82
13.10	4.9	4.6	98.0	7.3	634.43	0.78
13.20	3.6	4.0	94.7	7.1	634.36	0.75
13.30	3.3	3.5	91.1	7.0	634.28	0.72
13.40	2.9	3.1	87.2	6.7	634.20	0.69
13.50	2.8	2.9	83.4	6.5	634.11	0.66
13.60	2.6	2.7	79.6	6.3	634.03	0.63
13.70	2.5	2.6	75.9	5.9	633.95	0.60
13.80	2.4	2.5	72.5	5.4	633.87	0.58
13.90	2.3	2.4	69.5	5.0	633.80	0.55
14.00	2.2	2.3	66.8	4.6	633.73	0.53
14.10	2.2	2.2	64.4	4.3 4.0	633.67	0.51 0.50
14.20 14.30	2.1 2.0	2.2 2.1	62.3 60.4	4.0	633.62 633.58	0.50
14.30 14.40	2.0	2.1	58.7	3.5	633.50	0.48
17.40	2.0	2.0		5.5	000.04	V.=/

PROJECT : CRONK II SUBDIVISION	JOB NO.	: 14199
LOCATION: CRONK ROAD	DATE	:09-03-15
TOWN OF NEWBURGH, NY	SHEET	4 OF
TYPE OF CALCULATION: STORM WATER MANAGEMENT	COMPUTE	D BY: CTB
COMMENTS: TYPE III DISTRIBUTION SOIL CONSERVATION SERVICE METHOD	CHECKED	BY : CTB

.

.

POND ROUTING

HYDROGRAPH #APR-10 POND #PONDA15 STORM FREQUENCY: 10 YRS.

TIME	INFLOW	AVG INFLOW	S2/DT+02/2	OUTFLOW (CFS)	WATER ELEV (FT)	STORAGE (AC FT)
(HRS)	(CFS)	(CFS)	(CFS)	(CFS)	(「」)	(AC FI)
14.60	1.8	1.9	55.8	3.1	633.47	0.45
14.70	1.8	1.8	54.5	2.9	633.44	0.44
14.80	1.7	1.8	53.4	2.7	633.41	0.43
14.90	1.7	1.7	52.4	2.6	633.39	0.42
15.00	1.6	1.7	51.5	2.4	633.37	0.42
15.10	1.6	1.6	50.7	2.3	633.35	0.41 0.40
15.20	1.5	1.6	50.0	2.2	633.33	0.40
15.30	1.5	1.5	49.3	2.1 2.0	633.31 633.30	0.39
15.40	1.5	1.5 1.5	48.7 48.2	2.0	633.29	0.39
15.50	1.4 1.4	1.5 1.4	40.2	1.9	633.25	0.39
15.60 15.70	1.3	1.4	47.0	1.8	633.26	0.38
15.80	1.3	1.3	46.5	1.7	633.25	0.38
15.90	1.2	1.3	46.1	1.7	633.24	0.37
16.00	1.2	1.2	45.6	1.6	633.23	0.37
16.10	1.2	1.2	45.2	1.5	633.22	0.37
16.20	1.1	1.2	44.9	1.5	633.21	0.36
16.30	1.1	1.1	44.5	1.4	633.20	0.36
16.40	1.0	1.1	44.2	1.4	633.19	0.36
16.50	1.0	1.0	43.8	1.3	633.18	0.36
16.60	1.0	1.0	43.5	1.3	633.18	0.35
16.70	1.0	1.0	43.2	1.3	633.17	0.35
16.80	1.0	1.0	42.9	1.2	633.16	0.35
16.90	0.9	1.0	42.7	1.2	633.16	0.35 0.35
17.00	0.9	0.9	42.4	$1.1\\1.1$	633.15 633.15	0.35
17.10	0.9	0.9	42.2 42.0	1.1	633.15	0.34
17.20	0.9	0.9 0.9	42.0	1.1	633.14	0.34
17.30	0.9 0.8	0.9	41.6	1.0	633.13	0.34
17.40 17.50	0.8	0.9	41.4	1.0	633.13	0.34
17.60	0.8	0.8	41.2	1.0	633.12	0.34
17.70	0.8	0.8	41.0	0.9	633.12	0.34
17.80	0.7	0.8	40.9	0.9	633.11	0.33
17.90	0.7	0.7	40.7	0.9	633.11	0.33
18.00	0.7	0.7	40.5	0.9	633.10	0.33
			•			

PROJECT : CRONK II SUBDIVISION	JOB NO.: 14199
LOCATION: CRONK ROAD	DATE :09-03-15
TOWN OF NEWBURGH, NY	SHEET 5 OF
TYPE OF CALCULATION: STORM WATER MANAGEMENT	COMPUTED BY: CTB
COMMENTS: TYPE III DISTRIBUTION SOIL CONSERVATION SERVICE METHOD	CHECKED BY : CTB
	========================

· ·

POND ROUTING

HYDROGRAPH #APR-10 POND #PONDA15 STORM FREQUENCY: 10 YRS.

TIME (HRS)	INFLOW (CFS)	AVG INFLOW (CFS)	S2/DT+O2/2 (CFS)	OUTFLOW (CFS)	WATER ELEV (FT)	STORAGE (AC FT)
(HRS) 						
20.30 20.40 20.50 20.60 20.70 20.80 20.90 21.00	0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5	38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2	0.5 0.5 0.5 0.5 0.5 0.5 0.5	633.05 633.05 633.05 633.05 633.05 633.05 633.05 633.05	0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31

•

PROJECT : CRONK II SUBDIVISION JOB NO.: 14199						99
LOCATION: CRONK ROAD					:09-03	8-15
TOWN OF NEWBURGH, NY			SHEI	ΞT	6 OF	?
TYPE OF CALCULATION: STORM WATER	MANAGEMENT		COMI	PUTI	ED BY:	CTB
COMMENTS: TYPE III DISTRIBUTION SOIL CONSERVATION SERVICE					D BY :	CTB
		======				
POND	RAPH #APR-10 #PONDA15 QUENCY: 10 Y					
SUMMARY OF POND	ROUTING RES	ULTS				
PEAK INFLOW	: 20.7	CFS	@ T	=	12.40	HRS.
PEAK DISCHARGE	: 7.6	CFS	@ T	=	12.80	HRS.
PEAK STORAGE VOLUME	: 0.82	AC.FT	-			
PEAK STORAGE ELEVATION	: 634.53					
FREEBOARD	: 2.47	FT.				

PROJECT : CRONK II SUBDIVISION	JOB NO.: 14199			
LOCATION: CRONK ROAD	DATE :09-03-15			
TOWN OF NEWBURGH, NY	SHEET 1 OF			
TYPE OF CALCULATION: STORM WATER MANAGEMENT	COMPUTED BY: CTB			
COMMENTS: TYPE III DISTRIBUTION SOIL CONSERVATION SERVICE METHOD	CHECKED BY : CTB			

Hydrograph Name: APR-100

Sto	orm	ı Data			Dı	cain	lage	Area	Da	ata	
Frequency Rainfall										0.30 0.10	Hrs.
Runoff			***	Hydr	ogra	aph	Stat	us:	Va	lid	****

Time (Hrs)	Flow (CFS)	Time (Hrs)	Flow (CFS)	Time (Hrs)	Flow (CFS)	Time (Hrs)	Flow (CFS)
(Hrs) 11.00 11.10 11.20 11.30 11.40 11.50 11.60 11.60 11.70 11.80 11.90 12.00 12.10 12.20 12.30 12.40 12.50 12.60 12.50 12.60 12.70 12.80 12.90 13.00 13.10 13.20 13.30	(CFS) 1.6 1.7 1.9 2.0 2.2 2.6 2.8 3.6 4.5 5.4 7.9 11.6 18.4 28.2 31.8 28.8 22.9 17.6 13.0 10.3 7.5 6.6 5.1	(Hrs) 13.60 13.70 13.80 13.90 14.00 14.10 14.20 14.20 14.30 14.40 14.50 14.60 14.50 14.60 14.70 14.80 14.90 15.00 15.10 15.20 15.30 15.40 15.50 15.60 15.70 15.80 15.90	(CFS) 4.0 3.9 3.7 3.6 3.5 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.7 2.6 2.5 2.4 2.2 2.4 2.2 2.1 2.0 2.0 1.9	(Hrs) 16.20 16.30 16.40 16.50 16.60 16.70 16.80 16.90 17.00 17.00 17.10 17.20 17.30 17.40 17.50 17.60 17.50 17.60 17.70 17.80 17.90 18.00 18.10 18.20 18.30 18.40 18.50	(CFS) 1.7 1.7 1.6 1.5 1.5 1.5 1.4 1.4 1.4 1.4 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	(Hrs) 18.80 18.90 19.00 19.10 19.20 19.30 19.40 19.50 19.60 19.70 19.80 19.90 20.00 20.00 20.20 20.30 20.40 20.50 20.60 20.70 20.80 20.90 21.00	(CFS) 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0
$13.40 \\ 13.50$	$\begin{array}{c}4.5\\4.3\end{array}$	16.00 16.10	1.9 1.8	$18.60 \\ 18.70$	1.0 1.0		

PROJECT : CRONK II SUBDIVISION	JOB NO.	: 14199
LOCATION: CRONK ROAD	DATE	:09-03-15
TOWN OF NEWBURGH, NY	SHEET	2 OF
TYPE OF CALCULATION: STORM WATER MANAGEMENT	COMPUTE	D BY: CTB
COMMENTS: TYPE III DISTRIBUTION SOIL CONSERVATION SERVICE METHOD	CHECKEL) BY : CTB

· •

WORKING CURVE FOR POND NO.PONDA15

ELEV DISC. (FT) (CFS) 632.00 0.0					0.10 HRS
632.00 0.0	ST(S2 (AC FT)	DRAGE S2 (CFS-HRS)	02/2 (CFS)	S2/DT (CFS)	S2/DT+O2/2 (CFS)
633.000.2634.006.2635.008.8636.0010.7637.0012.4	0.00 0.30 0.62 0.99 1.44 1.97	0.0 3.6 7.5 12.0 17.4 23.8	0.0 0.1 3.1 4.4 5.4 6.2	0.0 36.0 75.0 120.0 174.0 238.0	0.0 36.1 78.1 124.4 179.4 244.2

PROJECT : CRONK II SUBDIVISION	JOB NO	.: 14199
LOCATION: CRONK ROAD	DATE	:09-03-15
TOWN OF NEWBURGH, NY	SHEET	3 OF
TYPE OF CALCULATION: STORM WATER MANAGEMENT	COMPUTI	ED BY: CTB
COMMENTS: TYPE III DISTRIBUTION SOIL CONSERVATION SERVICE METHOD	CHECKE	D BY : CTB

· ·

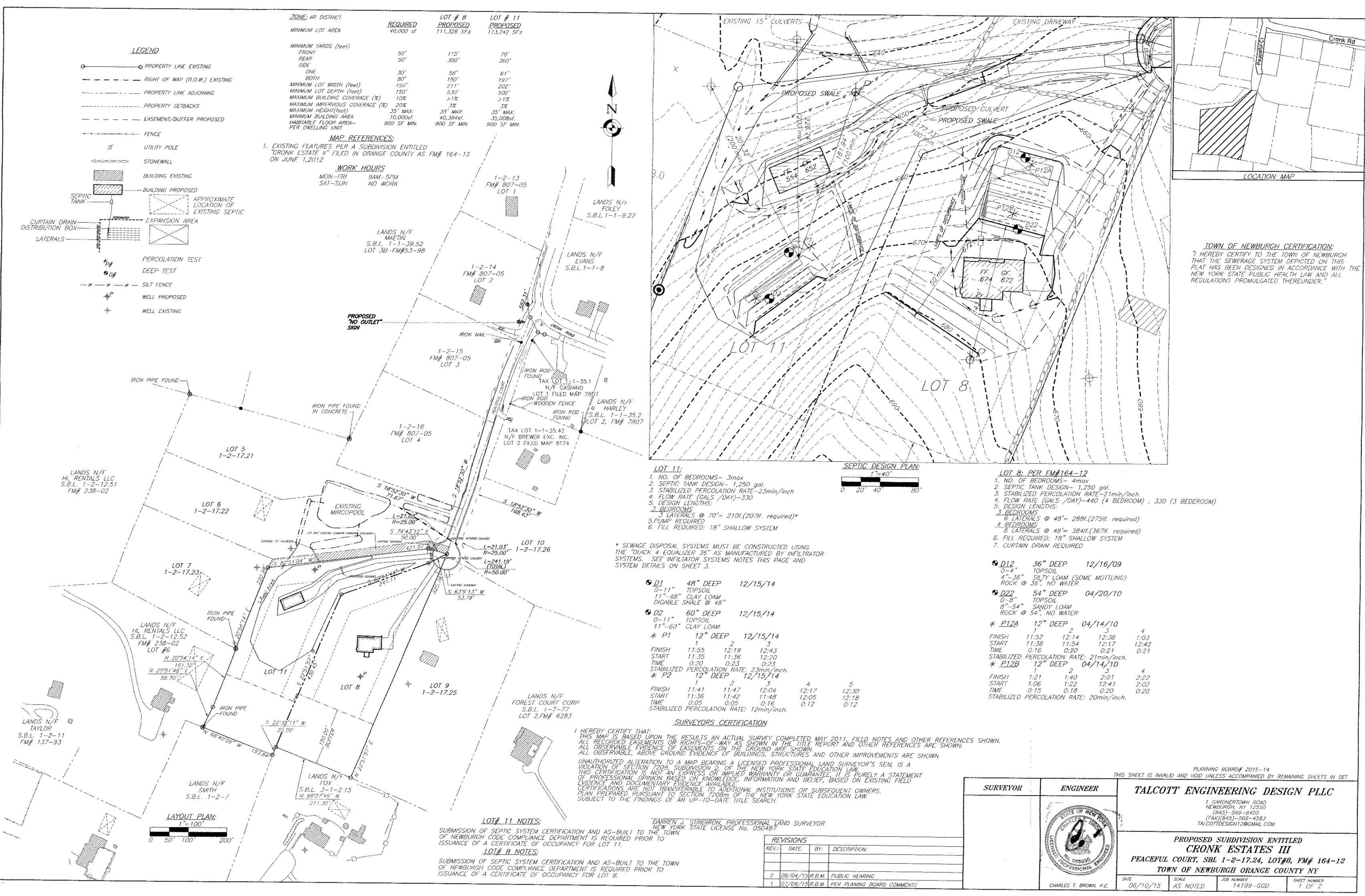
POND ROUTING

HYDROGRAPH #APR-100 POND #PONDA15 STORM FREQUENCY: 100 YRS.

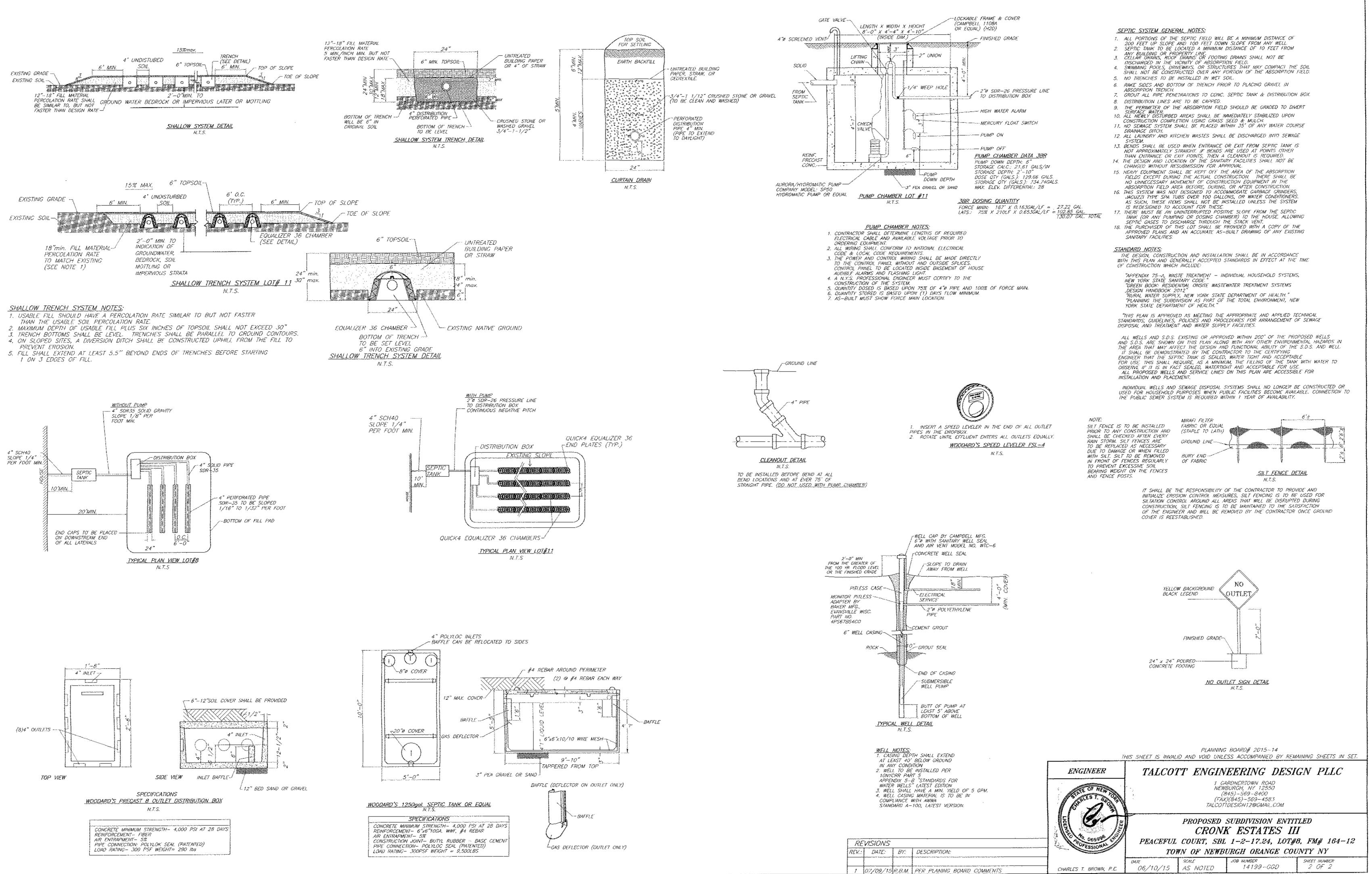
		AVG			WATER	
TIME	INFLOW	INFLOW	S2/DT+02/2	OUTFLOW	ELEV (FT)	STORAGE (AC FT)
(HRS)	(CFS)	(CFS)	(CFS)	(CFS)	(F1) 	(AC F1)
11.00	1.6	0.8	0.8	0.0	632.02	0.01
11.10	1.7	1.7	2.5	0.0	632.07	0.02
11.20	1.9	1.8	4.3	0.0	632.12	0.04
11.30	2.0	2.0	6.3	0.0	632.17	0.05
11.40	2.2	2.1	8.4	0.1	632.23	0.07
11.50	2.6	2.4	10.7	0.1	632.30	0.09
11.60	2.8	2.7	13.3	0.1	632.37	0.11
11.70	3.6	3.2	16.4	0.1	632.45	0.14
11.80	4.5	4.1	20.4	0.1	632.57	0.17
11.90	5.4	5.0	25.3	0.2	632.70	0.21
12.00	7.9	6.7	31.8	0.2	632.88	0.26 0.34
12.10	11.6	9.8	41.4	1.0	633.13	0.34
12.20	18.4	15.0	55.4	3.0	633.46	0.60
12.30	28.2	23.3	75.7	5.9	633.94	0.80
12.40	31.8	30.0	99.8	7.4	634.47 634.96	0.98
12.50	28.8	30.3	122.7	8.7 9.3	635.28	1.12
12.60	22.9	25.9	139.9 150.9	9.3	635.48	1.21
12.70	17.6	20.3	156.5	9.9	635.58	1.25
12.80	13.0	15.3	158.3	10.0	635.62	1.27
12.90	10.3	11.7 8.9	157.2	9.9	635.60	1.26
13.00	7.5 6.6	7.1	154.4	9.8	635.55	1.24
13.10	5.6	6.1	150.7	9.7	635.48	1.21
13.20 13.30	5.0	5.4	146.4	9.5	635.40	1.17
13.30 13.40	4.5	4.8	141.7	9.4	635.31	1.13
13.50	4.3	4.4	136.7	9.2	635.22	1.09
13.60	4.0	4.2	131.7	9.0	635.13	1.05
13.70	3.9	4.0	126.7	8.9	635.04	1.01
13.80	3.7	3.8	121.6	8.6	634.94	0.97
13.90	3.6	3.7	116.7	8.3	634.83	0.93
14.00	3.5	3.6	112.0	8.1	634.73	0.89
14.10	3.3	3.4	107.3	7.8	634.63	0.85
14.20	3.2	3.3	102.8	7.6	634.53	0.82
14.30	3.1	3.2	98.4	7.3	634.44	0.78
14.40	3.0	3.1	94.2	7.1	634.35	0.75

=========		==================	=======	=======================================	==============	============	
COMMENTS:	TYPE III D SOIL CONSE			METHOD	CHECKEI	D BY : CTB	
	ALCULATION:			MANAGEMENT	COMPUTI	ED BY: CTB	
	TOWN OF NE				SHEET	5 OF	
LOCATION:	CRONK ROAD		_		DATE	:09-03-15	
PROJECT :	CRONK II S	UBDIVISION	I		JOB NO	.: 14199	

•

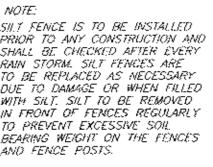

POND ROUTING

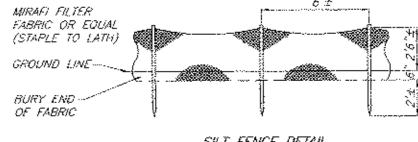
HYDROGRAPH #APR-100 POND #PONDA15 STORM FREQUENCY: 100 YRS.


		AVG			WATER	
TIME	INFLOW	INFLOW	S2/DT+02/2	OUTFLOW	ELEV	STORAGE
(HRS)	(CFS)	(CFS)	(CFS)	(CFS)	(FT)	(AC FT)
18.20	1.0	1.1	43.5	1.3	633.18	0.35 0.35
18.30	1.0	1.0	43.2	1.3	633.17	0.35
18.40	1.0	1.0	42.9	1.2	633.16	0.35
18.50	1.0	1.0	42.7	1.2	633.16	
18.60	1.0	1.0	42.5	1.2	633.15	0.35
18.70	1.0	1.0	42.3	1.1	633.15	0.35
18.80	1.0	1.0	42.2	1.1	633.15	0.34 0.34
18.90	0.9	1.0	42.1	1.1	633.14	
19.00	0.9	0.9	41.9	1.1	633.14	0.34
19.10	0.9	0.9	41.7	1.0	633.13	0.34
19.20	0.9	0.9	41.6	1.0	633.13	0.34
19.30	0.9	0.9	41.5	1.0	633.13	0.34
19.40	0.9	0.9	41.4	1.0	633.13	0.34
19.50	0.9	0.9	41.3	1.0	633.12	0.34
19.60	0.8	0.9	41.2	1.0	633.12	0.34
19.70	0.8	0.8	41.0	0.9	633.12	0.34
19.80	0.8	0.8	40.9	0.9	633.11	0.33
19.90	0.8	0.8	40.8	0.9	633.11	0.33
20.00	0.8	0.8	40.7	0.9	633.11	0.33
20.10	0.8	0.8	40.6	0.9	633.11	0.33
20.20	0.8	0.8	40.5	0.9	633.10	0.33
20.30	0.8	0.8	40.4	0.9	633.10	0.33
20.40	0.8	0.8	40.3	0.8	633.10	0.33
20.50	0.8	0.8	40.3	0.8	633.10	0.33
20.60	0.8	0.8	40.3	0.8	633.10	0.33
20.70	0.8	0.8	40.3	0.8	633.10	0.33
20.80	0.8	0.8	40.3	0.8	633.10	0.33
20.90	0.8	0.8	40.3	0.8	633.10	0.33
21.00	0.8	0.8	40.3	0.8	633.10	0.33

· •

PROJECT : CRONK II SUBDIVISION JOB NO.: 14199						
LOCATION: CRONK ROAD DATE :09-03-15						
TOWN OF NEWBURGH, NY	SHEET 6 OF					
TYPE OF CALCULATION: STORM WATER	MANAGEMENT COMPUTED BY: CTB					
COMMENTS: TYPE III DISTRIBUTION SOIL CONSERVATION SERVICE	METHOD CHECKED BY : CTB					
POND	APH #APR-100) #PONDA15 QUENCY: 100 YRS.					
SUMMARY OF POND	ROUTING RESULTS					
• - · · · - · · ·						
PEAK INFLOW	: $31.8 \text{ CFS} @ T = 12.40 \text{ HRS}.$					
PEAK DISCHARGE	: $10.0 \text{ CFS} \otimes T = 12.90 \text{ HRS}.$					
PEAK STORAGE VOLUME	: 1.27 AC.FT.					
PEAK STORAGE ELEVATION	: 635.62					
FREEBOARD : 1.38 FT.						




and the second second

REVISIONS			
REV.;	DATE:	BY:	DESCRIPTION:
, :	07/00/15	004	OCO DI ANIMO

